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higher-order Lagrangian 
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Physics, Beijing Polytechnic University, Beijing 100022, People's Republic of China 

Received 21 January 1991, in final form 22 April 1991 

Abstract. For a canonical formalism with a higher-order derivative, the Corresponding 
generalized first Noether theorem (GFNT) for a constrained Hamiltonian system and the 
generalized Noether identities ( C N I )  for a system with a non-invariant action integral are 
derived, which may be useful to analyse the Dirac constraint for such a system. Using the 
CFNT another example is given in which Dirac's conjecture fails; using the G N I  the strong 
riid .*& ioirjer*y8iioii laws  ai^ dediiced and ii is ;:la; for ien$,rr Vaiisn; 
systems there is also a Dirac constraint. Suppose that there are only first-class constraints 
(FCC) in a system, then an algorithm for the construction of a gauge generator is developed. 
once the Hamiltonian and the FCC of the system with a higher-order Lagrangian are given. 

1. Introduction 

The connection between continuous symmetry and conservation laws is usually referred 
to as Noether's theorem. In previous papers the generalization of the first Noether 
theorem for constrained and non-conservative systems (Li 1981, 1984, 1985, Li and Li 
1990) and the generalization of Noether identities for variant systems (Li 1987, 1988) 
were given. In these papers, all considerations are based on examination of the 
Lagrangian in configuration space and the corresponding transformations expressed 
in terms of Lagrange's variables. For a system with regular Lagrangian and finite 
degrees of freedom, the invariance under the continuous transformation in terms of 
Hamilton's variables was discussed by Djukic (1974). The system with a singular 
Lagrangian is subject to some inherent phase space constraint (Dirac 1964, Sundermeyer 
1982), the generalization of the Noether theorem to a system with ordinary-singular 
Lagrangian in terms of canonicai variabies was discussed by the author ( i i  and i i  
1991). Here the symmetry properties in a constrained Hamiltonian system with a 
singular higher-order Lagrangian are further investigated. 

Dynamical systems described in terms of higher derivatives have been investigated 
for a long time (Leon and Rodrigues 1985) in connection with non-local field theory 
(Pais and Uhlenbeck 1950), relativistic dynamics of particles (Ellis 1975, Jaen er a/  
~ Y O U ,  ncsrerenno IYOY). gravity rneory (uiiyamaanu u e w i t i  IYOL,  ~ r e i i e  I Y  i I ,  rraonin 
and Tseytlin 1982, Szczyrba 1987), modified Kdv equations (Kentwell 1988). supersym- 
metry (Kersten 1988), string models (Battle el a /  1987, Nesterenko and Nguyen 1988) 
and so on (Galvio and Lemos 1988, Saito et a /  1989, Hebda 1990). To analyse the 
symmetry properties of a singular Lagrangian with higher derivatives is thus necessary. 

425: 
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In this paper, the generalized first Noether theorem (GFNT) for a constrained 
Hamiltonian system and the generalized Noether identities ( G N I )  for a variant system 
with a second-order Lagrangian are derived in a canonical formalism, and some 
applications of these theorems to the analysis of the Dirac constraint are given. From 
the G N I  the strong and weak conservation laws can be deduced. Using the G N I  it is 
shown that for certain variant systems there is also a Dirac constraint. Combining the 
G N I  and Dirac constraint conditions gives rise to more relationships among some of 
the variables. As is well known, the Lagrangian multipliers connecting with first-class 
constraints (FCC) represent the functional arbitrariness in the theory. Along the trajec- 
tory of motion the c" can 'give us some additional information about Lagrange 
multiplers connecting with FCC. The GFNT and G N I  can give us another possibility to 
discuss Dirac's conjecture. When the solutions of generalized Killing's equations are 
found, then the conserved quantities of the form (20) automatically exist. Whether the 
conservation laws (20) derived from HE via canonical formalism are exactly equivalent 
to the results arising from Lagrange's formalism via the classical Noether theorem is 
considered. Another example is given in which Dirac's conjecture fails. Moreover, one 
can examine the G N I  which give us the consistency or inconsistency results along the 
trajectory of the constrained system arising from HE for an admissible Lagrangian; if 
one obtains an inconsistency result, then Dirac's conjecture fails in that problem. 
Suppose that there are only FCC in a system or the FCC are completely separated from 
the series of second-class constraints (scc), then an algorithm which gives the canonical 
gauge generators for a constrained Hamiltonian system with a singular second-order 
Lagrangian is developed. An example is given: application of these results to a model 
of field theories for which the gauge transformation has been constructed and a 
conservative current found for the field coupling with an external source; this conserva- 
tion law is valid whether Dirac's conjecture holds true or not. 

2. GFNT in a canonical formalism for a constrained Hamiltonian system 

The GFNT will be given in a canonical formalism for a constrained Hamiltonian system 
with a singular second-order Lagrangian. For the sake of simplicity one usually 
considers a system with finite degrees of freedom exhibiting the essential problem by 
invariant theories and extension to field theories, and the singular Nth-order 
Lagrangian is straightforward. Consider a system described by a singular Lagrangian 
L =  L(t, q, q, q )  (q  = [q', q2 . .  , . , qN]).  The Ostrogradski transformation introduces 
canonical momenta (Nesterenko 1989) 

where ql, ,  = 4'. q121 = q', and using these relations one can go over from the Lagrangian 
description to the Hamiltonian description. The canonical Hamiltonian is defined by 

which may be formed by eliminating only the & ) .  The summation is taken over 
repeated indices. The Hamiltonian of the system depends only on the canonical 
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variables both for regular and singular Lagrangians. From the variation of the 
Hamiltonian and Euler-Lagrange equations one can get (Nesterenko 1989) 

S I  S I  - ~ p ! . "  ' + sq;, = o 
Spj"' 69L)  

where 

(4) 

For a regular Lagrangian the canonical variables 9ia,, pi"' are independent, but for a 
singular Lagrangian the extended Hessian matrix 

is degenerate and one supposes its rank to be N-  R. Since H ,  is degenerate, (2) is 
not solvable for all qiZJ, but, we have R constraints, 

'$:(qle13 P'"') = O  ( a  = 1 ,2 , .  . . , R, a = 1,2) (7) 
which are derived from (2) and called the primary constraints (PC). From (7) onethas 

Introducing the Lagrangian multipliers A'(  f )  and combining the expressions (4) and 
(8) one obtains the canonical equations for a constrained Hamiltonian system with a 
singular second-order Lagrangian: 

Using the Poisson bracket 

(9) can be written as 

where Hr is a total Hamiltonian, H T =  H + A"$". 

form and that the corresponding action integral is 

4 1 ~ 1 = { 9 1 m J ,  HT} pi"' = {pi"' ,  HT} ( 1 1 )  

Suppose that for a system it is possible t o  construct a Lagrangian L, in Hamilton's 

Let us consider the transformation properties of the system under the continuous group 
with the infinitesimal transformation given by 

f '  = f + At = f + e,,?(f, q1.1, p'"' )  

9ce1(t') = & d f ) + A q k ~ ( t )  = qlc . , ( r )+ERC%i ( f ,  q(<rI.P'"') (13) 
pi""( t ' )  = p ! . m ' ( f ) + A p \ m ' ( f )  =p!."'( f ) +  e , , ~ p ' o l ( t ,  9,m1,  p'"') 

where E,, ( U  = 1 ,2 , ,  . . , r )  are parameters. Suppose the change of the Lagrangian is 
SL,, = D ( E . , ~ " )  under the transformation (13) ,  where D = d / d t  and C l " =  
n"(t, q1.,, p'"' ) ,  i.e. the Lagrangian is invariant up to an exact differential term under 
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the transformation (13), then from (12) one has 

where 

Using a set of the Lagrange multipliers A " ( f )  and combining the expressions (14) and 
(16), from (9) one obtains 

D[pj"'(('" - q i , l ~ " ) +  Lpr" -Cl"] = h"F: .  (18) 
Therefore, we have the following oFNTin canonical formalism. If, under the transforma- 
tion (13), the Lagrangian L, is invariant up to an exact differential term such that the 
constraint conditions satisfy F 1: = 0, or 

then the expressions 

p ! " ' f i z )  - HT" -Cl" = const (U= 1 , 2 , .  . . , r )  (20) 
are constants of the motion. This theorem is a generalization of the previous result (Li 
and Li 1991). 

If A t = O  in the transformation (131, condition (19) implies that the constraint 
conditions are invariant under the transformation (13); if A f  # 0 in the transformation 
(13). the condition (19) implies that the constraint conditions are invariant under the 
simultaneous variations Sq;., and Sp!"' determined by (13). 

and T : ' ~ '  do not depend on qi2,  and p!*' (a = 1,2), 
substituting (13) in the necessary condition (14) which must be satisfied for a Lagrangian 
Lp to be invariant up to an exact differential term, then the condition (14) leads to the 
systems of partial differential equations of unknown variables T", t;, and 7:'" 
obtained by equating terms in corresponding degrees of cj;21 and p!"' on the left- and 
right-hand sides of (14) (e.g. see Djukic 1974): 

If by assumption T", 
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these partial differential equations (21) and condition (19). which are linearly related 
to the unknown functions T-, 6;:) and vTia l ( i=  I ,  2, . . . , N, (I = I ,  2 ,  U =  1, 2 , .  . . , r ) ,  
are called generalized Killing's equations for a constrained Hamiltonian system with 
a singular second-order Lagrangian. When the generalized Killing's equations, where 
the functions H, 4: and R" are defined, admit a solution in T", 6;:) and 7Y'"', then 
the conserved quantities of the form (20) automatically exist for this system. 

3. Dirac's conjecture 

Dirac (1964) in his work on generalized canonical formalism conjectured that all 
secondary first-class constraints (SFCC) are independent generators of the gauge trans- 
formation which generates equivalence transformations among physical states. If this 
conjecture holds true, then the dynamics of a constrained Hamiltonian system should 
be correctly described by the equations of motion arising from the extended Hamil- 
tonian H E =  HT+p4y., where ,ye are SFCC and pa are Lagrange multipliers. There 
have been some objections to Dirac's conjecture (Sugano and Kamo 1982, Appleby 
1982, Castellani 1982, Sugano and Kimura 1983, Costa et a /  1985, Grdcia and Pons 
1988), and some counter examples have been given (Cawley 1979, Frenkel 1980). All 
these objections are based on the straightforward observation that the equations of 
motion derived from H E  are not strictly equivalent to the corresponding Lagrange 
equations. Here, this problem will be discussed starting from another point of view. 

In analogy to Dirac's generalized Hamiltonian dynamics, for the system with a 
singular higher-order Lagrangian, from the stationary of the PC, one can define success- 
ively the secondary constraints according to the Dirac-Bergmann algorithm 

+!={$!-', HT}.  (22) 
This algorithm is continued until 4: satisfies 

+."+I={+.", H T } =  cL$k ( k s m ) .  (23) 
All the constraints 4s are classified into two classes. A +a is defined to be first class 
if {&, +,,} = 0 (mod &) for all $6, otherwise it is second class. Similarly, there is also 
a problem about Dirac's conjecture for a singular higher-order Lagrangian. 

The CFNT in canonical formalism gives us another possibility to examine Dirac's 
conjecture. Let us consider whether the conservation laws derived from H E  via CFNT 

in canonical formalism are equivalent to the results arising from Lagrange's formalism 
via the classical Noether theorem. Now we present another example with the Lagrangian 

L =  i " ( i : + i ; ) + f y ( Z : + z ; )  ( f l > l )  (24) 

+u=p.v=o. (25) 

the previous example (Li and Li 1991) is a special case for n = 1 (see also Frenkel 
1980). There is only a primary constraint 
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The generalized velocity x can be represented by 

The total Hamiltonian is 

The stationary condition of constraint gives us the following secondary constraints as 
long as x # const: 

XI = 2: 

x 2 = z :  

x3 = Z1PZt ( 2 8 ~ )  

x4 = Z 2 P Z Z  ( 2 8 d )  

xs = P x .  (28e)  

H, = HT+ pixa (29) 

All these constraints are FCC. The extended Hamiltonian is 

where pa ( a  = 1,2, .  . . , 5 )  are Lagrangian multipliers. The Lagrangian L,, and 4' are 
invariant under the rotation in the (z,, z2) plane. From the HT via the GFNT in canonical 
formalism one can obtain angular momentum conservation which can also be yielded 
by Lagrange's variables via the classical Noether theorem. But if the SFCC in the 
Hamiltonian are taken into account one cannot obtain this result from the extended 
Hamiltonian H E .  Dirac's conjecture fails in this example, which differs from other 
counter examples in that we do not write constraints in a linearized form as Cawley 
and others do. Most recently, it has been shown by Qi (1990) that for the examples 
of Cawley and others Dirac's conjecture holds true. 

4. GNI in canonical formalism for a constrained Hamiltonian system 

As is well known, in the massive Yang-Mills theories the Lagrangian in general is not 
invariant under gauge transformation; the gauge-invariant Lagrangian of Fermi and 
gauge fields is not invariant under the chirality transformation of the Fermi field; the 
invariant Lagrangian under the BRS transformation is not invariant under the gauge 
transformation alone, etc. Therefore the discussion of the transformation properties 
for variant system is necessary (Li 1987). Now let us consider the transformation 
depending on arbitrary functions &. , ( f )  ( U  = 1,2, .  . . , r )  and their derivatives up to 
some fixed order. Such infinitesimal transformations in canonical variables are given by 

f ' =  f + RY&,, = f+a;D'e , , ( t )  

q i L l ( f ' )  = q;.I(f)+S;blE,, = q ; m l ( f ) + b ! & l D ' 4 0  (30) 

p!.e ' ( f ' )  =p! ." ' ( t )  + TIi"'&,, = pi"')( f ) +  c:zDID"~, , (  f )  

where a: ,  by{*' and c ~ ~ "  are the functions of f ,  qim,  and pi" ' ) .  In the gauge field 
theories, according to the gauge transformation of field variables, one can in general 
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define the transformation of canonical momenta. The transformation properties of the 
system with respect to this transformation leads to the G N I  in canonical formalism. In 
quantum theory, the G N I  correspond to the Ward-Takahashi identities. 

Under the transformation (30) suppose that the change of canonical action (12) is 
given by 

where U" and Q" are linear differential operators, 

U" = uZD" Q" = qD' (32) 

and the U ' S  and U'S are functions of 1, qiel and p!". From expression (12) one has 

= J ' I  U"E, dt. (33) 

Since E , ( I )  are arbitrary, one may choose ~ , ( t )  and their derivatives up to a required 
order such that the boundary term in (33) vanishes, and repeat the integration by parts 
of the remaining terms of this identity. Again considering the arbitrariness of the E " ( ( ) ,  

one can force the boundary term to vanish, after which one can apply the fundamental 
lemma of the calculus of variations to conclude that 

1 ,  

(U= 1,2, .  . . , r )  

where E", Si,,, 
and U" respectively, defined by 

and 6'' are the adjoint operators with respect to R", SE,, T:""' 

wheref; g are smoothed functions defined o n j a ,  b] and [.I: represent the boundary 
terms, and similar expressions hold for S;",,, S ; , ;  T:""', fy"') and U", fi". In (34), 
fi-(l)  indicates the adjoint operator applied to unity. The expressions (34) are called 
G N I  in canonical variables of a system whose action integral is variant under the 
transformation (30). This is a generalization of previous work (Li and Li 1991). We 
combine the constraint conditions for the constrained system and the G N I ,  which may 
give rise to more relationships among some of the variables. Sometimes these can tell 
us at what stage the Dirac-Bergmann algorithm will terminate. 

According to the G N I  (34), for certain cases, one can obtain the strong conservation 
laws or exact differential identities which are valid whether the equations of motion 
are satisfied or not. 

c"'"'+c:;'"'D 10 and U"=u;+u:D+u;D', where a ; ,  b::"', by:=,, c:*', c:l'"', U;, U; 
Suppose in transformation (30), R "  = a" ~ SrC:,=b:;;,,+bT;,,D, TY'"'= 
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and u; are functions of t ,  9im1 and p ia ' .  Multipling the C N I  (34) by E<,( I )  and substracting 
the result from the basic identity 

= D ( ~ " E , ) +  U"&, 
one obtains the exact differential identity 

+ E , D U ; - U F D E ~  =O. (37) 1 
If the transformation group has a subgroup and ~ , ( t )  = &;A:( t ) ,  where E: are para- 
meters of the Lie group, one can get the weak conservation laws along the trajectory 
of the motion 

+ A:Du; - u;DA: = const ( p  = 1,2 , .  . . , r ) .  (38) 
Using the GNI (34) one can also discuss Dirac's conjecture, if this conjecture holds 

true, along the trajectory of motion arising from HE and the G N I  (34) becomes 

= i i" (1 )  (U= 1.2,. . . , r). (39) 
All the FCC are taken into account in the set of dJa. If (39) gives us inconsistent results 
for admissible Lagrangians, then Dirac's conjecture regarding the SFCC may be invalid 
in this circumstance. 

In theories with the SCC, all the Lagrange multipliers connecting with the SCC are 
determined by the Hamiltonian and SCC themselves, but in theories with the FCC, the 
Lagrangian multipliers connecting with the FCC are not determined by the equations 
of motion, and the undetermined multipliers represent the whole of the functional 
arbitrariness in the solution of the Hamiltonian equations of motion (Sundermeyer 
1982). If Dirac' conjecture holds true in a problem, along the trajectory of motion, 
the expression (39) may become a trivial equality or sometimes perhaps give us more 
relationships for these Lagrange multipliers connecting with the FCC. Therefore, the 
application of the GFNT and C N I  in canonical formalism enables us to obtain some 
additional information about the Dirac constraint and corresponding Lagrange 
multipliers. 

5. The variance and Dirac constraint 

As is well known, a gauge-invariant system in Lagrangian formalism has a Dirac 
constraint (Sundermeyer 1982). Using the C N I  (34) in canonical formalism it can 
further be shown that for certain variant systems are also constrained Hamiltonian 
systems. 
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Consider a system, under the local transformation 

t ' =  f 

and suppose the change of canonical action integral is given by (31), where 

(4i)  

The corresponding transformation properties of the massive Yang-Mills field theories 
belong to this category, when mass terms are introduced in the Lagrangian. In this 
case the G N I  (34) become 

,,-=. Y,. 
U - u u o i r ,  ~ ~ ~ l , ~ ! ~ l ) ~ u ~ ( i , ~ ~ ~ l , ~ ! ~ l ) .  

We remember the Ostrogradski transformation for p!" and 

d JL J2L J2L d 2 ~  .. J ~ L  ..., 
f - 9, + - 4' +- 4 __-__ - 

d t  Jq' Jq'Jt Jq'Jq' Jq'Jcj' Jq J q '  (43) 

Substituting (1) and (43) into the identities (42), the highest-order derivative of qc must 
occur in the terms D(b;71jp:) ,  i.e. in the terms D{b;~, ,D[(J 'L/Jq'  Jq')q']}, which leads 
to terms containing the fifth-order derivatives of q' and these must cancel each other 
irrespective of other terms (Bergmann 1949), 

These conditions are to be fulfilled for any fifth-order derivative of 9'; one then obtains 

. - 0 .  b;7,1-- 
J ~ L  

Jq' (45) 

Because b;,' are not all identically zero, which implies that the extended Hessian 
matrix (6) is degenerate and therefore this variant system has a Dirac constraint. 

In the case of a system whose Lagrangian is gauge invariant or invariant up to an 
exact differential term under the transformation (40), we can proceed in the same way 
to conclude that the system also has a Dirac constraint. 

6. The generators of gauge transformation 

Gauge theories play an important role in modern field theories; these theories have a 
gauge invariance under the local transformation (or gauge transformation). Now we 

constrained Hamiltonian system with a singular second-order Lagrangian. For the sake 
of simplicity, all the constraints of the system are assumed to be first class. Under an 
infinitesimal gauge transformation suppose the two trajectories ( & , ( f ) ,  p ! " ' ( ! ) ,  A " ( t ) )  
and (q ;ml( f )+8q; , , l ( f ) ,  p/"'(t)+Sp/"'(f) .  A q ( f ) + S h " ( x ) )  both satisfy the equations of 

r h m l l  Ao.inln.- .In-ri+hm tr. rnnri..nrt thn nenemtnrc nf ~ n i i n ~  tr3nafn.rm.t:r.n fr.r n 
a110.1 "C"c1"y a,, ' , , ~ " , , L L . . l .  L" I Y . l l l l Y 1 L  L1.V e-..-.".-.' "1 --Ye- I. Y..~.Y....I.."I. 1". P 
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motion (11) and constraint conditions (71, then the varied trajectory equations (11) 
and constraint conditions (7) can he expanded to first order in the small variations 
S q : , , ,  Sqi,, ,  Sp$"', Sp!."' and 6 A "  and, using equations (11) and (7) for the unvaried 
trajectory, one finds 

(mod PC). 
JdJ: J4:  - 6q&, + 7 Sp!'" = 0 
J4l.71 Jpiml 

Now let the variations of canonical variables be generated by a phase space function 
G ( q & , ,  pi"') and parametrized by an arbitrary infinitesimal function ~ ( t ) ,  then, in 
general, one has to consider a generator of the type 

m m 

G =  E ( * ) C ~ =  x (D'E)G,  
k = O  h = O  

where the variation of qiml and p$"' are given by 

(47) 

On substituting (48) into (46) one finds, owing to the arbitrariness of ~ ( f ) ,  the following 
conditions on the Gk : 

(490) - (1 Gx, HT} + G k - 1 )  = 0 (mod PC) 

(49b) q ( ( G k ,  HT)+Gh- - l )=O (mod PC) 
Jql*,  
(Gk, dJ:}=o. (mod PC) (49c) 

J 
Jp!.-' 

J 

Because we are considering variations that leave the trajectory on the constraint 
hypersurface one should add the further requirement that [G , ,  4:}=0 to the third set 
of equations (49). the 4: being all the secondary constraints that arise in the Dirac- 
Bergmann algorithm. Hence, all the GI, have to be FCC. H can be substituted instead 
of HT, owing to the assumption that all the constraints are FCC. From (49) one finds 
the following recursive relations in a manner analogous to the discussion which was 
given by Castellani (1982): 

G,, = 0. (mod PC) (50c) 

The generator G of the gauge transformation must be conservative; from expression 
(47) one gets 
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and owing to the arbitrariness of E ( ( )  we conclude that the recursive relations in (50)  
are nothing but the conservation law of G. 

Even when the scc appear, if the series of the FCC derived from PC are completely 
separated from the series of second-class ones, this formulation on gauge symmetry 
is valid for such a system. 

Therefore, we have generalized the Castellani results to the constrained Hamiltonian 
system with a singular second-order Lagrangian starting from another point of view. 
All the Gk have to he FCC and, with the exception of those FCC which arise as powers 
,y" (Castellani 19821, are part of the gauge generators. The Gk-, is deduced from G, 
according to the recursive relations (50b). Moreover, G,  must he a primary FCC for 
every primary FCC using (50) to construct the chains of Gk until Go is reached. 

To illustrate the algorithm for the construction of the generator, we present an 
example. A model with the Lagrangian is given by 

(52) 

P Y I  = 4 t l  P2 - q 1 2 1  pi" = 0 (53a)  

P i " =  q?2J-q?2) -p \2J  p p  = q;2,-pi2' pyJ=-q[*l .  (53b) 

The PC is only 

+ o =  p y J  = 0. (54) 

= 4f214?2J+ qfZl(q?2)- q:21) - qlllq:ll~ 

The momenta conjugate to qiwl are 
( 2 ) -  . I  

The Hamiltonian is given hy 

~ = ~ ~ , I ~ ~ " ' - ~ = P ' , " P ~ ' + P / ' ' ~ ~ Z , + P : " ~ ~ Z J + P ~ ' ~ ~ ~ , - ~ ~ ~ ~ ( ~ ~ ~ , - ~ ~ ~ J ) + ~ ~ ~ I ~ ~ ~ I  ( 5 5 )  

and the total Hamiltonian is given by 

H~ = H + A+'. 
The stationary condition for constraints yield the following secondary constraints: 

+ I  = {+', HT} = - p y 1 -  q12J = 0 

+'={+', HT} = q f l 1 - p y J  = O  

+ 3 = { + 2 , H } -  T - P 2  "'-0 - . 

(56)  

(570) 

(576) 

(57c) 
All the constraints +'(k =0, 1, 2, 3) are FCC. Let G,= +', then, from recursive (50b), 
one finds G, = - + I ,  G ,  = +', Go= - + 3 .  According to expression (47) the generator of 
the gauge transformation is given by 

G = - E (  t ) + 3 +  i( t ) + 2 -  E (  t ) + '  + c( t )+" .  ( 5 8 )  

This generator produces the following transformation: 

SY:,,={q:<"I, GI = o  6q:*,={SLl, GI=--El"Yr) 

6q:"J=(q;" , ,G}=&'"+2' ( t )  @:"I = {pl"', G} = - E l * )  ( 1 )  ( 5 9 )  

6p:"' = spy' = 0. 

SL= - - ( 4 ' & + q ' & ) .  

Under this gauge transformation, one finds the invariance of the action 

(60) 
d 
dr 
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The action is invariant under the local transformation (59), hence there is a 
corresponding ciw (34) for this system. If all FCC in the expression (39) are taken into 
account this expression becomes the trivial identity. There is no contradiction with 
Dirac’s conjecture for this example. 

7. Application to the field theories 

Consider the vector field with a scalar field whose Lagrangian density is given by 

(61) &= -aFF.F”“ --a,F,,a“F’”+fm2B,,B’- mB+a*v +ta+rp*(t) 

where the field strength tensor is expressed in terms of potentials in the usual way, 
Fus = a,B, -a&, and e is a constant. The momenta ~ ( x )  conjugate to the scalar field 

C 

4 

vb-1 is 

The momenta n:’ and conjugate to the vector fields = B y  and B E j  = B” are 

Tg’=o (630) 

T ( 2 )  I = CaOF,. (63b) 

T: ’ = ca, a‘F,, ( 6 3 ~ )  

n!”= c(V2F,,+ao~’F,.)+F,,-Jo~!*’ (63d) 

respectively. The Hamiltonian is given by 

Ho= d3x7& I 

The PC is only 
4” = Tp. 

The total Hamiltonian is given by 

H,=  d’x(Xe,+A+v). (66) J 
The stationarity for the constraints yields the following secondary constraints: 

4 ’  = {$”, HT] = -Tj,”+J’ni2’=0 

,#,>={@l,H)- - a q j  i I l l  + m ~ = 0  

(67) 

(68) 
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where the Poission bracket for canonical variables ( $ F e , ,  rip’) is given by 
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All the constraints + * ( k  =0,1 ,2)  are FCC, and according to (47) and (50) the generator 
of the gauge transformation is 

(70) G = , r d3x(r; !d‘E t mrE + rpdodPE j. 

The gauge transformations induced by G are 

SB:, = { Bc, ,  G} = J’E SBG, = &J+E s?) = mE (71a) 

S x Z )  = s r ‘ 2 ’ =  a* = 0. (716) 

Let us consider the vector field B’ coupling with the extemal source j @ = ( p , j ) ;  
Under the transformation (71) ,  the Lagrangian is gauge invariant. 

the Lagrangian density is then given by 

P = + B”j,. (72) 
Under the transformation (71),  this Lagrangian is not invariant, and in this case the 
G N I  (34) becomes 

where H = I  d3.r(ZO-Bpje). The total Hamiltonian of this system is given by 

Hr = d’x(Xo- B*j++ A+’)). (74) i 
According to the equations of motion (9) of this constrained Hamiltonian system, from 
(65), (73) and (74), along the trajectory of motion one obtains 

J@j+ = 0. (75) 

If the equations of motion are derived from the extended Hamiltonian HE= 
H T + l d 3 ~ [ ~ I ~ ’ + ~ 2 ( + 2 - p ) 1 ,  where +’ and + 2  aregiven by (67) and (68) respectively. 
One can obtain the same result (75). Therefore this conservation law valid whether 
Dirac’s conjecture holds true or not. 
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